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ADMISSIBILITY OF SIMPLIFIED EQUATIONS IN THE DYNAMICS 
OF GYROSCOPIC SYSTEMS* 

L.K. KUZ'MINA 

Based on the asymptotic approach of /l/, rigorous mathematical methods 

are used to single out some known simplified models from the theory of 

gyroscopic systems and to prove that they may legitimately be employed to 

solve problems in dynamics (including stability problems). The initial 

system is of the singularly perturbed type /2/. The use of methods from 

stability theory /3, 4/ yields conditions under which transition to a 

simplified (computational) model is permissible. Several papers have been 

devoted to the solution of such problems for singularly perturbed 

equations /5/ by methods of Lyapunov theory. 

1. Consider a gyroscopic system whose state is determined by n generalized (defining) 

Lagrange coordinates. The differential equations of perturbed motion of this system, written 

in Lagrangian form, are 

da&&t + (b" + &?q~r= Qill(qd + Qk(m3 &I t1.f) 
dq&dt = q.w’ 

Here qM is the n-dimensional vector of mechanical generalized coordinates, a(q.+fM) is 
the symmetric matrix of the positive-definite quadratic form representingthekinetic energy 

of the system, b(qM) is the symmetric matrix of the positive-semidefinite quadratic form 

occurring in the decomposition of the dissipative function of viscous friction forces, g @lM) 
is the skew-symmetric matrix of gyroscopic coefficients, Qnr’(q~)= -e’qiui, where e = e (QDI) 
is the square matrix of (potential and non-potential) forces, depending on the generalized 

coordinates, and QM” collects all the non-linear terms, Q,,,” (0, 0) = 0. 
We shall assume that all functions in (1.1) are jointly holomorphic in all the variables 

(in a certain region). 

The simplified model for a system of type (l.l), known in the literature as the "pre- 

cessional" model, appears in various versions: 

(b" + g") (I;= Qhd + G (qM7 id dw/dt = Sk (1.2) 

f&v = Qh hnr) + G (qnr. &M). dq,/dt = f&t (1.3) 

(b,” + gl”) qicr = Q1’ h) + q,” (PM, qk) (1.4) 

d&ddt + (b,’ + ~2’) ni = Qz’ (qy) + 0; (w, eh, 

dqnrldt = sir 

(see /6, 7/, /6, 8/ and /9, lo/, respectively. Here 

where g, is the n,-dimensional vector of generalized mechanical coordinates defining the 

position of the gyroscope suspensions (relative to the object, the platform stabilized), 

bi, g, (i = 192) 
al, 

are minors of the appropriate orders in the matrices a. b, g, respectively, 
and the superscript T indicates transposition. 

These abbreviated equations are derived from (1.1) by dropping certain terms, on the 
grounds that they are "small". The dynamics of the initial system (1.1) is then investigated 
using the abbreviated Eqs.(l.2), (1.3) or (1.4). However, whereas the legitimacy of Eqs.cl.2) 
has been discussed in the literature and there are numerous results for special cases /6, ll- 

14/, no such treatment exists for equations of type (1.3) and (1.4). 
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We pose the foil -owing problem: i .t is required 
means and rigorously establish their legitimacy. 

to construct simplified models by rigorous 

2. We consider a gyroscopic system, assuming that its gyroscopes are high-speed (the 
internal angular momenta of the gyroscopes may be as large as desired). In terms of system 
(1.1) this means that the gyroscopic coefficients depend on a large non-dimensional positive 

parameter H (all other terms in (1.1) are of zero order of magnitude relative to Ii): g mY g*l-i, 

H = Uy, and p a small parameter. we now transform (1.1) to a system of differential equations 
whose coefficients are small parameters. Put T = pt and introduce new variables x1 = a&&f' 
&, x2 = QM. Then system (1.1) becomes 

$ dx,,‘dT =X1 (p, x), dx,kit =X, (k~, x) (2.2) 

Transformation to singularly perturbed equations yields a natural way to choose a simpli- 

fied system and rigorously establish its legitimacy, by separating the motions (and variables) 
of the system into components of different orders of magnitude. 

As a first approximate (abbreviated) system for (2.1), we take the system Linearized with 
respect to p. Call it system A (this is an abbreviated system of the first kind). In the 

old variables, system A corresponds to model (1.2), for which we retain the adjective "pre- 
cessional". 

Another possible approximation to system (2.1) is obtained by taking the degenerate 

system (corresponding to p = 0), as it is customarily called in the theory of singular per- 
turbations. We call it system B (this is an abbreviated system of the second kind, in 

Tikhonov's terminology /15/). In the old variables it corresponds to model (1.3). We shall 
call it the limiting model (as it corresponds to the degenerate system, 11 = 0). Models of 
type (1.3) were considered in /8/, and the possibility of utilizing them as simplified sets 

of equations was pointed out in /6/. 

System (1.4) cannot be derived from (1.1) under the assumptions we have made concerning 

the physical nature of the model (high-speed gyroscopes). As rightly observed in 16, 7/, its 

rigorous derivation (and proof) require different physical premises and another approach to 

the introduction of the small parameter. 

3. We will now consider a gyroscopic system with high-speed gyroscopes, whose state is 

determined by the same n generalized coordinates and by u additional coordinates; itisassumed 

that the differential equations for the latter do not contain terms involving the large 

parameter Ii. This type of system was studied in /ll, 16/. By the same method as before, we 

construct simplified models in a rigorous manner. The study will be illustrated by the 

example of a gyroscopic stabilizing system (GSS), simulated by an electromechanical system 

with II mechanical generalized (Lagrangian) coordinates and u electrical generalized 

(Maxwellian) coordinates /17/. The differential equations of the perturbed motion are as 

follows (written in the Lagrange-Maxwell or Gaponov form): 

Here 

QMe(qF;.)= AwqE’, AM= 110, A, 0 lITI QEM (qA)=BE& 

BE == /j 0, B, 0 I!, QE’ (qim qE’) = QE I\ qM> 6 \I' 

where qE is the u-dimensional vector of Maxwellian coordiantes, L is the symmetric (u X u) 
matrix of the positive-definite form representing the electromagnetic energy of the system, 

R (qE.1 is the symmetric (u X U) matrix of the positive-definite quadratic form in the 

decomposition of the dissipative flux function characterizing the Joule heat loss, QMME and 

9s~ are mechanical generalized forces of electrical origin (ponderomotive forces) and 

electrical generalized forces of mechanical origin, A = II Ah.111 is an (s--m) XU matrix, 

B = 11 B,,\l is a u x (s-m) matrix, Qs' is the vector of electrical generalized forces 

corresponding to the electrical generalized coordinates, & is a u X (n + U) matrix, and 

QM” and QE” are sums of non-linear terms. System (3.1) is of order (2n -I- u). 
In a system with high-speed gyroscopes, as in Sect.2, we have g = g*H,H =1/p. Put 

T = p't and define new variables 

x1 = a dq,/dt, x* = Lqic’, x,=q&f 

In terms of these new variables, system (3.1) becomes 

pa,dxk/dT = Xk (p, x) (k = 1, 2, 3) 

a,=2. a,71, aa= 

(3.2) 
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Using separation of variables into components of different classes, one can construct 
various natural simplified systems. The simplified system of the first kind, obtained by 
linearization (with respect to the small parameter p), corresponds in the old variables to 
a system of equations of order (a-+- u): 

0" f g") &= Q;M (qd + QME (qE’) + Gs (s;*l, Gr PE’) (3.3) 

dbE’/dt -I- R”qE’ = QE’ ($w, qE’) i- QEM (4;) -C QE" (qM, qnr', qs') 

&x/dt===q;* 

We shall call this the precessional model (as in /11, 16/J. 
The simplified system of the second kind (corresponding to an approximate system accurate 

to within ~0, i.e., the degenerate system), gives a system of order R: 

fin& = Q;M (W) -k QYE (qE’) f & (%w& %‘) (3.4) 

B”qE‘ = QE’ (qMt Q’) + TiE= (4s &> Q’)t dw,‘dt = 4iw 

We shall call this the limiting model. 
Thus, with regard to the systems under consideration here (of types (2.1) and (3.211, 

the theory of singular perturbations enables us to single out a sequence of approximate 
(simplified) systems, which (as it applies to gyroscopic systems) permit of a clear physical 
interpretation. To be specific, the simplified system of the first kind corresponds to the 
traditional precessional model ((1.2) and (3.3)); the simplified system of the second kind 
corresponds to the simpler limiting model ((1.3) and (3.4)). 

4. We must now specify conditions under which the transition to a simplified model of 
lower order is legitimate. Our problem is as follows: under what conditions does stability of 
the simplified model guarantee that the initial system has the same stability property, and 
under what conditions are the solutions of the simplified and the full system similar to one 
another over an infinite time interval? Following an idea out forward by N.G. Chetayev /4/ 
and using the methods of stability theory, one can establish conditions of this kind (as in 

/17/J. 

Th@orextI 1. Let Ig"l=#=O and suppose that all the roots of the characteristic equation 
of the simplified system (1.2) lie in the left half-plane (with the possible exception of m 
zero roots in the.case of a GSS), and that the equation /a'& f b' + g' 1 -= 0 satisfies the 
Hurwitz conditions. Then for sufficiently large H, if the trivial solution of the simplified 
(precessional) model is asymptotically stable (stable), then the same is true of the trivial 
solution of the complete (initial) system (1.1). Given any prescribed numbers E 3 0. 6 > 0, 

Y>O(E and y may be as small as desired), there exists He 
all t> t, -/- y, the inequalities 

I/ & - q; Ii < a. 11 4&r - & 11 -E s 

hold throughout the perturbed motion, provided that at time t, 

Iiqnro -&&III< 6, qnro = Sift? 

The superscript "s" indicates that the solution is of the 

such that for all HI> H, and 

simplified system: qc = q~(q’~), 

where sk = cp (qd is the solution of the algebraic equation in (1.2) for q;. 

Proof. In accordance with the approach adopted here, we consider (1.1) as a singularly 
perturbed system. In the case of high-speed gyroscopes, Eqs.(l.l) reduce to the form of (2.1), 
where X,(p,x) = Pi&)x + . . . (j = 1,2). When this is done, system (2.1) is not approximated 
by the traditional system but by that linearized with respect to p (system A). Note that 
systems (2.1) and A are special cases of the more general systems (1.1) and (1.2) considered 
in /17/, for which theorems have been established concerning the stability and proximity of 
the solutions in an infinite time interval, as well as the appropriate estimates /17/. Using 
Theorems 1 and 2 of /17/, we infer the following properties of systems (2.1) and A: 1) if 
I p WI # CJ and the equation 1 BE -P,,(O)( = 0 satisfies the Hurwitz conditions, and moreover 
all the roots of the characteristic equation of the simplified system A lie in the left half- 
plane (with the possible exception of m zero roots), then for sufficiently small p asymptotic 
stability (stability) of the trivial solution of the approximate system A implies the parallel 
property of the complete system (2.1); 2) forpreassignedvaluesof thepositivenumbers s, 6, Y 
(where e and y may be as small as desired), there exists p+ such that for O< p < p* and 
all t>&+y the perturbed motion satisfies the inequality 11x -x*/I<e, provided that 
initially 11 xi0 -xlO* Ii < 6, xsO = xoO*. The asterisk indicates a solution of the approximate 
system A; letters without an asterisk denote solutions of the complete system (2.1). Returning 

to the old variables pM,& and noting that the transformation we have used is non-linear, 
non-singular, uniformly regular and preserves stability, we obtain the assertions of Theorem 1. 
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An analogous result has been obtained for the limiting model (1.3). The appropriate 
assertions are also true for GSS (system (3.1)). 

Our investigations furnish conditions under which the simplified model is admissible 

the sense used here). 

5. We will consider the legitimacy of models of type (1.4). The previous physical 

(in 

assumptions (high-speed gyroscopes) are no longer appropriate. To choose (1.4) as a simpli- 
fied model, we shall assume that the equatorial moments of inertia of the gyroscopes and the 

moments of inertia ofthesuspensions (and their masses) are small compared with the mass 

characteristic of the objects (platforms) on which the gyroscopes are standing. In this con- 
nection we put a, ---~ a, (qnr, p) x ul*p in (l.l), where lJ>O is a small non-dimensional par- 
ameter, a2 -= a2 (qnr. p), where n2 (q&f. 0) = a, # 0. 

In accordance with the technique proposed here, we replace Eqs.(l.l) by singularly per- 
turbed equations. To this end we introduce the new variables x1 -= a * 1 9M’. % II WLil. q,ir II”‘. 
in terms of which system (1.1) becomes 

~dx,'dt=X~(Ir,x), dx,,:dt=Xz(n,x) (5.1) 

Putting p y 0 in this equation and taking the degenerate system as an approximation of 

(5.1), then returning to the old variables, we obtain system (1.4). It is perfectly natural 
to call this simplified system (1.4) the limiting model, since it correspondstothedegenerate 

system for (5.1) (but in a different sense than in Sect.2 and 3, since we have introduced a 

different small parameter). 

From the standpoint of mechanics, here too, as before, we have used the idea of separating 

different motions, thus obtaining a system (1.4) corresponding to a mechanical system with 

fewer degrees of freedom. 

6. We now need conditions under which it is admissible to use the simplified model (1.4) 

to investigate the dynamics of system (1.1). By the same method, following N.G. Chetayev and 

using the results of stability theory, we can prove the following assertions. 

Theorem 2. If (e’ / # 0 and the equations 

(b," + RIO) h + e1O a,*a -+ b,” -t g,” 

ii,%* -C (b,” + g,“) h + el’ i I 
=o. _. E 0 

a2 
(6.1) 

satisfy the Hurwitz conditions (or, in the case of GSS, the first of Eqs.(l.l) may have m zero 

roots), then for sufficiently small values of the parameter p asymptotic stability (stability) 

of the trivial solution of the limiting system (1.4) implies the parallel property of the 

trivial solution of system (1.1). For prescribed values of E > 0, 6 > 0, y > 0 (E and y may 

be as small as desired), there exists a value of p* such that in the perturbed motion, for 

all O(p<p+ and all t>t”+Y, 

II qnr - St& II < E, II qw - df II < F 

provided that at t, 

.s 
II 910 - q,, II < 6, 

.< 
q2, = q20. qm-SLO 

(the index s indicates a solution of the simplified system (1.4), with q,*6 = qh (qz’“, qnr”). 

where q,’ = ‘PI (qs.7 qnr) is the solution of the algebraic equation of (1.4) in %'. 

The proof uses the same approach as that of Theorem 1. Note that system (5.1) in the 

new variables is also a special case of the systems used in /17/. 
This result gives a rigorous justification of a simplified model widely used for com- 

putations in applied research /9, lo/. Under the conditions derived above, it is admissible 

(in the above sense) to go over to that model and utilize it as a working modeltoinvestigate 

the physical system in question. 

7. As examples, we investigated gyroscopic stabilizing systems. Here we shall consider 

a uniaxial gyrostabilizer (UGS), simulating it as an electromechanical system /la/, taking 

into account transients in the electric circuits of the servomechanisms. As in /I/, we assume 

that the stabilizer is an independently driven DC motor with controlled armature current. 
The different equations of the perturbed motion /18/ form a seventh-order system (?I = 2, 

u- 3) of type (3.1): 

of,” - HCL’ f b,p‘ = . , >‘a’. f ffp’ + b,a’ = g,i, + . 

,$ Lki’j’ 
+R,i,=E,+... (k = 1,2,3) 

E, = +$I, E, = -Qi, - gE1’, E, = 0 
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We have retained the notation of /18/; p is the angle of rotation of the gyroscope 
casing relative to the frame ,(the angle of precession), CL is the angle of rotation of the frame 
(the angle of stabilization), it, h i, are the currents in the amplifier, armature and field 
winding currents, respectively, Lkj(k,j = 1,2,3) are the coefficients of selfandmutualinductance 
inthesecircuits, RR (k = 1,2,3) are the resistances, br and bz are the coefficients of viscous 
friction on the axes of the suspensions of the gyroscope casing and frame, respectively, B 

and J are the moment of inertia of the gyroscope and the reduced moment of inertia of the 
gyrostabilizer relative to the appropriate axes, gM and g, the coefficients in the ex- 
pressions for the mechanical forces of electrical origin and the electrical forcesofmechanical 
origin, respectively, and 0 and D the coefficients in the expressions for the electrical 
generalized forces; the ellipses points stand for the omitted non-linear terms. 

The results of Sects.2, 3 imply that in the case of high-speed gyroscopes we can construct 
two kinds of working model: the precessional model (type (3.3)), in this case a fifth-order 
system of equations: 

-Ha‘+blB’=..., Hp.4 b,z'-Q,-'... 

ji?l Lkjij' + 
Rkir=ER+... (k;-1,2,3) 

and the limiting model (type (3.4)), in this case a second-order system: 

--HE‘ = , ., HP’ = g& + . 
R,i, = -wp + . . .I R,i, =: -l)i, + .( R,i, = . . 

It follows from our results that if H is sufficiently large (a sufficiently large value 
of the intrinsic angular momentum of the gyroscope), the precessional model of the CGS is 
admissible (in the sense adopted here), provided the trivial solution of the simplified system 
is stable and the quadratic form of the dissipative function, corresponding to the mechanical 
generalized coordinates, is positive-definite. 

However, if the mass of the stabilized object is large compared with that of the gyroscope, 
a different model must be used /6, 7/. By Sect.5, we see that this is a limiting model of 
type (1.4), corresponding here to the sixth-order system 

--Ho' _t b,@' Z . . ., In” i If8 t h,a- = g_*Ji* + * . . 

Transition to this system is admissible at sufficiently small values of the moment of 
inertia of the gyroscope relative to the suspension axis of the housing, provided the trivial 
solution of the simplified system is stable and the torque exerted by viscous friction on the 
axis of precession is not zero (b,>O). 
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CONTINUOUS MODAL CONTROL OF LINEAR MULTICOUPLED OBJECTS* 

V.A. BRUSIN and YU.M. ~KSIMOV 

A modal control method is considered in which the spectrum of the closed- 
loop system is continuously deformed in such a way that the spectrum of 
the open-loop object transforms into the desired spectrum. The algorithm 
of the continuous modal control is synthesized. The conditions for 
spectral control in the method are obtained. The approach is based on 
similar ideas to those in /l/, but a different class of controls is con- 
sidered here. Moreover, by using the appratus of Lyapunov functions, 
specified in the one-parameter family of the deformed spectrum, the 
deviation between the required spectrum and the closed-loop systemspectrum 
can be minimized in the Euclidean metric, in the case when the wanted 
spectrum cannot be obtained in the closed-loop system. 

1. Formulation of the problem. suppose we are given the linear controlled object 

s' (t) = As (t) + Bu (t), y (t) == Cx (1) (I.11 

:r E R", u E R"', I/YE R' 

where r is the state vector, u is the control vector, y is the vector of observed variables 

-4,R.C are constant matrices of suitable dimensionless, and I?" is a linear n-dimensional 
space over the real number field. We shall in future assume that the spectrum of the object 
(1.1) is simple and contains no multiple poles. We define the class of controls by 

where G is a matrix function of the scalar variable E. and a>0 is a parameter. The 

dynamic behaviour of the closed-loop system is given by the matrix 

whose spectrum is a function of the parameter CL. With CL = 0 we have the open-loop system, 

whose spectrum is denoted by A (0). As a varies, the class of linear systems is generated. 

Every element of the class (the linear system which has the spectrum .z (a) = {Pi (If). Pe (a), . -I 
pn (al}) is defined by a specific value of the parameter a. 
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